Tyrosine phosphatases regulate AMPA receptor trafficking during metabotropic glutamate receptor-mediated long-term depression.
نویسندگان
چکیده
Two forms of long-term depression (LTD), triggered by activation of NMDA receptors (NMDARs) and metabotropic glutamate receptors (mGluRs), respectively, can be induced at CA1 synapses in the hippocampus. Compared with NMDAR-LTD, relatively little is known about mGluR-LTD. Here, we show that protein tyrosine phosphatase (PTP) inhibitors, orthovanadate and phenylarsine oxide, selectively block mGluR-LTD induced by application of the group I mGluR agonist (RS)-3,5-dihydroxyphenylglycine (DHPG-LTD), because NMDAR-LTD is unaffected by these inhibitors. Furthermore, DHPG-LTD measured using whole-cell recording is similarly blocked by either bath-applied or patch-loaded PTP inhibitors. These inhibitors also block the changes in paired-pulse facilitation and coefficient of variation that are associated with the expression of DHPG-LTD. DHPG treatment of hippocampal slices was associated with a decrease in the level of tyrosine phosphorylation of GluR2 AMPA receptor (AMPAR) subunits, an effect blocked by orthovanadate. Finally, in dissociated hippocampal neurons, orthovanadate blocked the ability of DHPG to reduce the number of AMPA receptor clusters on the surface of dendrites. Again, the effects of PTP blockade were selective, because NMDA-induced decreases in surface AMPAR clusters was unaffected by orthovanadate. Together, these data suggest that activation of postsynaptic PTP results in tyrosine dephosphorylation of AMPARs and their removal from the synapse.
منابع مشابه
P6: Metabotropic Glutamate Receptor-Dependent Role in the Formation of Long-Term Potentiation
Long-term potentiation (LTP) is a reflection of synaptic plasticity that induced by specific patterns of synaptic activity and has an important role in learning and memory. The first clue of the potential role of glutamate receptors in LTP was in 1991 with the observation that the mGluR agonists 1-amino-1, 3-cyclopentanedicarboxylic acid (ACPD), increased LTP. Studies have shown that ACPD induc...
متن کاملThe tyrosine phosphatase STEP mediates AMPA receptor endocytosis after metabotropic glutamate receptor stimulation.
Although it is well established that AMPA receptor (AMPAR) trafficking is a central event in several forms of synaptic plasticity, the mechanisms that regulate the surface expression of AMPARs are poorly understood. Previous work has shown that striatal-enriched protein tyrosine phosphatase (STEP) mediates NMDAR endocytosis. This protein tyrosine phosphatase is enriched in the synapses of the s...
متن کاملCalcium binding to PICK1 is essential for the intracellular retention of AMPA receptors underlying long-term depression.
NMDA receptor (NMDAR)-dependent long-term depression (LTD) in the hippocampus is mediated primarily by the calcium-dependent removal of AMPA receptors (AMPARs) from the postsynaptic density. The AMPAR-binding, PDZ (PSD-95/Dlg/ZO1) and BAR (Bin/amphiphysin/Rvs) domain-containing protein PICK1 has been implicated in the regulation of AMPAR trafficking underlying several forms of synaptic plastici...
متن کاملMechanisms of group I mGluR-dependent long-term depression of NMDA receptor-mediated transmission at Schaffer collateral-CA1 synapses.
The mechanisms underlying group I metabotropic glutamate receptor (mGluR)-dependent long-term depression (LTD) of N-methyl-d-aspartate receptor (NMDAR)-mediated synaptic currents (EPSCs(NMDAR)) are poorly understood. Here we investigated the effects of (R,S)-3,5-dihydroxyphenylglycine (DHPG), a selective agonist of group I mGluRs, on the EPSCs(NMDAR) in area CA1 of acute hippocampal slices from...
متن کاملTyrosine phosphorylation of glutamate receptors by non-receptor tyrosine kinases: roles in depression-like behavior.
Several key members of the non-receptor tyrosine kinase (nRTK) family are abundantly present within excitatory synapses in the mammalian brain. These neuron-enriched nRTKs interact with glutamate receptors and phosphorylate the receptors at tyrosine sites. The N-methyl-D-aspartate receptor is a direct substrate of nRTKs and has been extensively investigated in its phosphorylation responses to n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 26 9 شماره
صفحات -
تاریخ انتشار 2006